MTE Meter Test Equipment

HYDROCAL 1003 оффшорный

Система мониторинга трансформаторного масла с измерением газов и влаги для применения с оффшорными ветровыми установками

Измерение и анализ газов, растворенных в трансформаторном масле, является наиболее эффективным способом для раннего обнаружения и диагноза нарушений в трансформаторах.

Кроме этого повлияет содержание воды в трансформаторном масле на его изоляционные свойства и усиливает риск коррозии и перегрева. Это происходит при состоянии, когда концентрация влаги достигает точки насыщения в масле и образуется вода.

Наряду с обычными газохроматографическими анализаторами изолирующего масла трансформатора, системы мониторинга и контроля в режиме реального времени обретают все большую важность во всем мире.

При помощи мониторинга в реальном времени основных газов, свидетельствующих о неисправностях в трансформаторе, можно значительно сократить расходы и достичь большей безопасности в эксплуатации трансформаторов.

Преимущества и особенности

- Индивидуальный анализ содержания растворенных в трансформаторном масле газов – водорода (Н2) и угарного газа (СО)
- Анализ концентрации воды (H₂O) растворенной в трансформаторном масле (H₂O) (относительно [%] и абсолютно [ppm])

- Специальная конструкция для применения с оффшорными ветровыми установками:
 - Корпус без окна, покрашен краской СХ
 - Задняя стенка с 2 кабельными втулками M20 (хромоникелевая сталь, IP 55, коррозионностойкий и кислостойкий) Опционально с 4 кабельными втулками (2 x M20 и 2 x M25)
 - Задняя стенка, вход масла и винты корпуса сделаны из нержавеющей стали V4A
- Простота установки на клапане трансформатора (G 1½" DIN ISO 228-1 или 1½" NPT ANSI В 1.20.1)
- Установка на работающем трансформаторе без останова его работы
- Комплексное программное обеспечение (в приборе и на ПК)
- Прибор не требует обслуживания
- Интерфейсы связи ETHERNET (опция) 10/100 МБит/с (медный провод / RJ 45 или светопровод / SC дуплекс), RS 232 и RS 485 для поддержания собственных протоколов передачи и для серийного подключения к подстанции с помощью протоколов по МЭК 61850, MODBUS® RTU/ASCII и DNP3
- Опциональный серийный модем DNP3 для подключения к АСУТП
- Опциональный серийный модем IEC 61850 для подключения к АСУТП

Функции мониторинга трансформатора

Напряжения и токи

(через трансформаторы / преобразователи напряжения и тока)

Контроль температуры

Температура масла верхней и нижней части трансформатора (через дополнительные температурные датчики)

Влагосодержание масла

(через дополнительный датчик влаги)

Свободная конфигурация

Аналоговые входы могут быть запрограммированы для подключения любых дополнительных датчиков

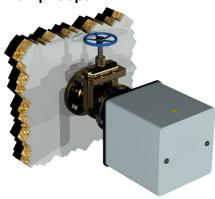
Вычисления:

Нагретая точка Расход жизни Скорость старения РАUWELS Бельгия

Степени охлаждения / положение переключателя обмоток

(например, преобразователем тока)

Коммуникация


RS 232 (стандарт)

- Через встроенный интерфейс RS 232
- На месте, например, ноутбуком с помощью собственного протокола

RS 485 (стандарт)

- Режим работы шина или точка к точке
- Протокол MODBUS® RTU/ASCII или собственный
- Длина шины не более 1000 м
- Коммуникация с не более 31 приборами HYDROCAL
- Конфигурация с помощью микропрограммы или программы ПК HYDROSOFT

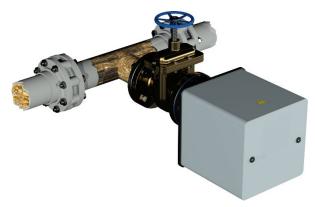
Установка прибора

Трансформатор без системы охлаждения

Прибор HYDROCAL 1003 размещается на клапане трансформаторного бака.

Естественная циркуляция масла обеспечивает непрерывный приток масла к мембране.

Аналоговый модем (опция)


- Встроенный аналоговый модем с кабелем подключения длиной 15 м
- Протокол собственный

Модем ETHERNET (опция)

- Встроенный модем связи ETHERNET 10/100 МБит/с (медный провод / RJ45 или светопровод / SC дуплекс)
- МЭК 61850 (подготовлен) или собственный протокол

Модем DNP3 (опция)

- Встроенный серийный модем DNP3 с интерфейсом RS 485
- Протокол DNP3 для подключения с АСУТП

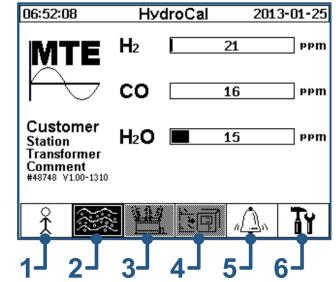
Трансформатор с системой охлаждения

Прибор HYDROCAL 1003 устанавливается на Т-образном вентиле, при возврате масла из системы охлаждения

Циркуляция масла, созданная системой охлаждения, обеспечивает непрерывный приток масла к мембране.

HYDROCAL микропрограмма – главное меню

1 Данные клиента


- Клиент
- Подстанция
- Трансформатор
- Примечание

2 Значения газ в масле

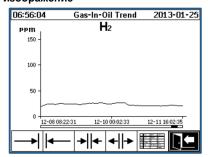
- Гистограмма
- Графическое изображение во временной зависимости
- Табличное изображение

3 Меню трансформатора

- Графическое изображение во временной зависимости
- Табличное изображение (еще нет в наличии)

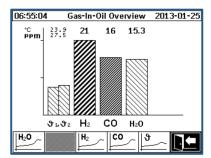
4 Значения измерения дополнительных датчиков

- Графическое изображение во временной зависимости
- Табличное изображение (еще нет в наличии)


5 Аварийные сигналы / Протокол аварийных сигналов

- Обзор сигналов
- Подтверждение сигнала

Настройка прибора


- Настройка аварийных сигналов
- Настройка связи
- Установки трансформатора
- Установки входов и выходов

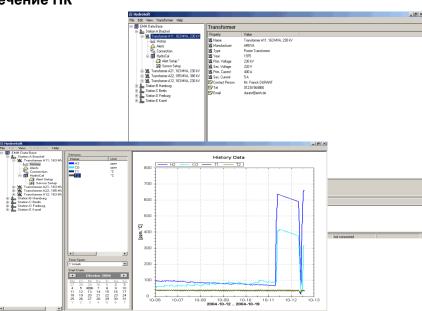
Газ в масле – графическое изображение

Значение измерения, в данном случае водород (H_2) , изображается во временной зависимости.

Газ в масле - гистограмма

Гистограмма водорода H_2 , угарного газа CO, влагосодержания масла H_2O (в [ppm] и [%]) и температуры

Обзор аварийных сигналов



Изображение установленных тревожных (аварийных) сигналов и их актуального статуса в виде таблицы.

HydroSoft программное обеспечение ПК

Главные функции программы

- Настройка и обслуживание отдельных приборов HYDROCAL с помощью HydroSoft
- Считывание сохраненных данных прибора HYDROCAL и конфигурации
- Обработка и изображение считанных данных (Графическое изображение во временной зависимости или таблица)
- Дальнейшая обработка данных (Excel, CSV, промежуточное сохранение и распечатка)
- Сохранение и архивирование обработанных данных и конфигурации
- Автоматическое считывание данных и выдача аварийных сообщений по электронной почте

Технические данные HYDROCAL 1003 оффшорный

Общие

110 В (120 В) -20% +15% AC 50/60 Гц $^{1)}$ или 220 В (240 В) -20% +15% AC 50/60 Гц $^{1)}$ или 110 В (120 В) -20% +15% DC $^{1)}$ или Напряжение питания:

220 B (240 B) -20% +15% DC ¹⁾ Другие напряжения по запросу!

Энергопотребление: Макс. 200 ВА

Корпус: Алюминий с краской СХ / нержавеющая

сталь типа V4A

-20°C ... +65°C

Габариты: Ш 224 х В 224 х Г 307.5 мм

Bec: Прибл. 9.0 кг Рабочая температура: -50°C ... +55°C

(внешней среды) (ниже -10°С дисплей заблокирован)

Температура масла: -20°C ... +90°C

(внутри трансформатора) Температура хранения:

(внешней среды)

до 800 кПа Давление масла:

(вакуум не допускается) Подключение к клапану: G 11/2" DIN ISO 228-1 11/2" NPT ANSI B 1.20.1

Безопасность

 ϵ Защитная изоляция: MЭК 61010-1 IP-55 Степень защиты:

Измерения

Измерение газа/влаги в масле					
Измеряемая величина	Диапазон			Точность ²⁾	
Водород Н2		0 2.000 ppm		± 15 % ± 25 ppm	
Угарный газ СО		0 2.000 ppm		± 20 % ± 25 ppm	
сырой H ₂ O _(аw)		0 100 %		± 3 %	
Влажность в минеральном масле		0 100 ppm		± 3 %± 3 ppm	
Влажность в синтетическом эфире ⁵⁾		0 2.000 ppm		± 3 % of MSC ⁶⁾	

⁵⁾Необязательно ⁶⁾содержание влажности

Принцип работы

- Принцип диффузии через газопроницаемую тефлоновую мембрану
- Микроэлектронные датчики газа для измерения H_2
- Электрохимическая ячейка для измерения СО
- Емкостной тонкопленочный датчик влаги для измерения H₂O (относительно [%] и абсолютно [ppm])
- Датчики температуры (температура масла, температура газа, температура задней стенки)

Аналоговые выходы

4 Аналоговые выходы пост. тока		Основные функции	
Тип	Диапазон	(свободная конфигурация)	
Постоянный ток	0/4 20 мА DC	Водород Н2	
Постоянный ток	0/4 20 мА DC	Влажность масла H₂O	
Постоянный ток	0/4 20 мА DC		
Постоянный ток	0/4 20 мА DC	Угарный газ СО	

Цифровые выходы

12 цифровых выходов		Макс. переключающая	
Тип	Управляющее напряжение	способность (свободная конфигурация)	
4 реле	12 B DC	220 В DC/В AC / 2 A / 60 Вт	
8 оптронов	5 B DC	U _{CE} : 24 В ном. / 35 В макс. U _{EC} : 7 В макс. I _{CE} : 40 мА макс.	

Аналоговые входы

8 аналоговых входов пост. тока		Точность	Примечания
Тип	Диапазон	измеряемых значений	
4 постоянный ток или 4 пост. напряжение	0/4 20 мА +20% или 0 10 В +20%	≤ 1.0 %	Изменяется перемычкой 3)
4 постоянный ток	0/4 20 мА	≤ 0.5 %	

Коммуникации

- RS 232 Серийный интерфейс с внешним подключением (протокол собственный или MODBUS® RTU/ASCII)
- RS 485 (протокол собственный или MODBUS® RTU/ASCII)
- ETHERNET 10/100 Мбит/с модем (опция) Подключение медным проводом / RJ45 или светопроводом / SC дуплекс (собственный протокол)
- Аналоговый модем (опция) (собственный протокол)
- Встроенный серийный модем DNP3 (опция) Подключение RS 485 (Протокол DNP3)
- Серийный модем ІЕС 61850 для подключе-ния к АСУТП (опция)

Примечания

- 1) **110 B (120 B)** ⇒ 110 B -20% = **88 B**_{мин} (120 B) +15% = **138 B**_{макс} 220 B (240 B) ⇒ 220 B -20% = 176 B_{мин} (240 B) +15% = 276 B_{макс}
- $^{2)}$ по отношению к температуре внешней среды $+20^{\circ}\text{C}$ и масла $+55^{\circ}\text{C}$
- 3) Стандартная конфигурация перемычки с завода: ток

Подключение

